Counting number fields

Allechar Serrano López (Montana State University)

09-Oct-2025, 20:30-21:30 (3 months ago)

Abstract: A guiding question in arithmetic statistics is: Given a degree $n$ and a Galois group $G$ in $S_n$, how does the count of number fields of degree $n$ whose normal closure has Galois group $G$ grow as their discriminants tend to infinity? In this talk, I will give an overview of the history and development of number field asymptotics, and we will obtain a count for dihedral quartic extensions over a fixed number field.

algebraic geometrynumber theory

Audience: researchers in the discipline


SFU NT-AG seminar

Series comments: The Number Theory and Algebraic Geometry (NT-AG) seminar is a research seminar dedicated to topics related to number theory and algebraic geometry hosted by the NT-AG group (Nils Bruin, Imin Chen, Stephen Choi, Katrina Honigs, Nathan Ilten, Marni Mishna).

We acknowledge the support of PIMS, NSERC, and SFU.

For Fall 2025, the organizers are Katrina Honigs and Peter McDonald.

We normally meet in-person in the indicated room. For online editions, we use Zoom and distribute the link through the mailing list. If you wish to be put on the mailing list, please subscribe to ntag-external using lists.sfu.ca

Organizer: Katrina Honigs*
*contact for this listing

Export talk to